Printe	ed Paş	ge:- 06 Subject Code:- AEC0303 Roll. No:
NO	OIDA I	INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) B. Tech SEM: IV - THEORY EXAMINATION (2023 - 2024) Subject: Signal, System and Network
Tim	e: 3 H	Hours Max. Marks: 100
		structions:
IMP:	Verify	y that you have received the question paper with the correct course, code, branch etc.
		stion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice
_		MCQ's) & Subjective type questions.
		n marks for each question are indicated on right -hand side of each question. your answers with neat sketches wherever necessary.
		uitable data if necessary.
		ly, write the answers in sequential order.
-		should be left blank. Any written material after a blank sheet will not be
evalud	ited/cl	hecked.
SECT	<u> ION-</u>	-A 20
1. Atte	empt a	all parts:-
1-a.		he discrete-time equation $y(n + 1) + 0.5$ n $y(n) = 0.5$ x(n+1) is Not attributable to (CO1)
	(a)	memoryless system
	(b)	time-varying system
	(c)	linear system
	(d)	causal system
1-b.		continuous-time system is governed by the equation $3y^3(t) + 2y^2(t) + y(t) = x^2(t) + y(t)$, $y(t)$ and $x(t)$ respectively are output and input The system is (CO1)
	(a)	linear and dynamic
	(b)	linear and non-dynamic
	(c)	non-linear and dynamic
	(d)	non-linear and non-dynamic
1-c.		Which property allows us to describe the output of an LTI system as a convolution f the input and the system's impulse response? (CO2)
	(a)	Homogeneity
	(b)	Linearity
	(c)	Additivity
	(d)	Time-invariance
1-d.	Fo	ourier transform of a rectangular pulse is (CO2)

	(a)	another rectangular pulse		
	(b)	triangular pulse		
	(c)	sinc function		
	(d)	impulse function		
1-e.	T	he inverse Laplace transform of	1	
	F	$(s) = \frac{s+2}{(s+2)^2+1} $ (CO3)		
	(a)	$e^{-t}\cos 2t$		
	(b)	$e^{-t} \sin 2t$		
	(c)	$e^{-2t}\cos 2t$		
	(d)	$e^{-2t}\sin 2t$		
1-f.	T	he region of convergence (ROC) of a Laplace transform is: (CO3)	1	
	(a)	The set of values of s for which the transform converges		
	(b)	The set of values of t for which the transform converges		
	(c)	The interval where the transform is continuous		
	(d)	The interval where the transform is discontinuous		
1-g.		or an ideal step down (n:1) transformer, which one of the following is the C arameter? (CO4)	1	
	(a)	n		
	(b)	0 3n 1/n ARCD parameters: 'A' represents: (COA)		
	(c)	3n		
	(d)	1/n		
1-h.	Ir	In ABCD parameters, 'A' represents: (CO4)		
	(a)	Transmission loss		
	(b)	Transmission gain		
	(c)	Reflection coefficient at port 1		
	(d)	Reflection coefficient at port 2		
1-i.	F	For real roots of s_k , all the quotients of s in $s^2 + \omega_k^2$ of the polynomial P (s) are(CO5)		
	(a)	negative		
	(b)	non-negative		
	(c)	positive		
	(d)	non-positive		
1-j.		Consider the impedance function $Z(s)=3(s+2)(s+4)/(s+1)(s+3)$. Find the value of R ₂ after realizing by first Foster method. (CO5)		
	(a)	1		
	(b)	1/2		
	(c)	1/4		
	(d)	1/8		

2. Attempt all parts:-

- A system is define by y(t) = 5x(t) + 6 where x(t) is input and y(t) is output of the 2.a. system. Find the system is linear or not. (CO1)
- 2
- 2.b. Determine whether the system is causal and stable. Justify your answers. (CO2) $h(t) = e^{-4t} u(t - 2)$
- 2
- Derive the relation between current and voltage for inductor and capacitor? (CO3) 2.c.
- 2.d. For the single-element two-port network in Fig. Y13 is: (CO4)

2

2.e. Consider the impedance function Z(s)=3(s+2)(s+4)/(s+1)(s+3). Find the value of R_{∞} after realizing by first Foster method. (CO5)

2

30

SECTION-B

3. Answer any five of the following:-

Determine whether the following discrete time systems are stable or not? (CO1) 3-a. 6

(i) y(n) = x(n) + x(n-1) + y(n-1)

- (ii) $y(n) = r^n x(n)$; r > 1
- 3-b. Find $x(t) = 4 + \cos(4 \pi t) + 3\sin(4t)$ is periodic or not, if periodic find its time period (CO1)

6

Show that the convolution of a signal x(t) with a unit impulse function results in 3-c. the signal x(t) itself. (CO2)

6

Find the convolution of the two continuous time signals $f(t) = \exp(-t^2)$ and $g(t) = \exp(-t^2)$ 3-d. $3t^2$, for all t (CO2)

6

Calculate v(t) for t > 0 in the circuit in Fig. (CO3) 3.e.

6

3.f. Find the transmission parameters for the circuit in Fig (CO4) 6

3.g. Find given polynomial is Hurwitz or not. (CO5)
$$s^4 + s^3 + 3s^2 + 8s + 24$$

SECTION-C 50

10

- 4. Answer any one of the following:-
- 4-a. Find the even and odd component of (CO1) $1. x_1(t) = e^{-2t} \cos(t)$ $2. x_2(t) = \begin{cases} Ae^{-\alpha t}, & t > 0 \\ 0, & t < 0 \end{cases}$
- 4-b. Find and draw the even and odd part of (CO1)
 - 1. u(t)
 - 2. r(t)
 - 3. $\sin(w_o t)u(t)$
 - 4. $cos(w_o t)u(t)$
- 5. Answer any one of the following:-
- 5-a. Compute the convolution y(n) = conv(x(n), h(n)) of the following pairs of signals: $x(n) = n \ u(n)$ and $h(n) = a^{-n} \ u(n-1)$, where a < 1 (CO2)
- 5-b. Determine and sketch the magnitude and phase response of the LTI causal system 10 described by the difference equation (CO2) $\frac{dy(t)}{dt} + y(t) = \frac{dx(t)}{dt} x(t)$
- 6. Answer any one of the following:-
- 6-a. Determine the Laplace transforms of the periodic functions in Figure (CO3) 10

10

6-b. Solve the following integrodifferential equation using the Laplace transform method: (CO3)

$$\frac{dy(t)}{dt} + 9 \int_0^t y(\tau) d\tau = \cos 2t, \qquad y(0) = 1$$

- 7. Answer any one of the following:-
- 7-a. Find the z parameters of the op amp circuit in Fig. Show that the circuit has no y parameters. (CO4)

7-b. Evaluate V_2/V_5 in the circuit in Fig (CO4)

- 8. Answer any one of the following:-
- 8-a. Realize the network using Cauer's first and second form. $Z(s)=(s^2+6s+8)/(s^2+3s)$. (CO5)
- 8-b. Realize the network using Foster's first and second form. Z(s)=5(s+1)(s+4)/(s+3)(s+5). (CO5)

